
By Xiangdong Xie
We determine a Bowen variety pressure theorem for the basic staff of a noncompacthyperbolic manifold of finite quantity (with size at the very least 3).
Read Online or Download A Bowen type rigidity theorem for non-cocompact hyperbolic groups PDF
Best symmetry and group books
Now in paperback, this graduate-level textbook is a wonderful creation to the illustration conception of semi-simple Lie teams. Professor Varadarajan emphasizes the advance of primary subject matters within the context of designated examples. He starts off with an account of compact teams and discusses the Harish-Chandra modules of SL(2,R) and SL(2,C).
Symmetry and staff conception offer us with a rigorous procedure for the outline of the geometry of items via describing the styles of their constitution. In chemistry it's a robust idea that underlies many it appears disparate phenomena. Symmetry permits us to safely describe the kinds of bonding that may happen among atoms or teams of atoms in molecules.
- *-Regularity of exponential Lie groups
- Seminar on Periodic Maps (Lecture Notes in Mathematics)
- The integral Novikov conjectures for linear groups containing torsion elements
- [FIA] B - Gruppen und Hypergruppen
- Representations of Finite and Compact Groups (Graduate Studies in Mathematics ; V. 10)
- Finite Groups, Edition: 2 Sub
Additional resources for A Bowen type rigidity theorem for non-cocompact hyperbolic groups
Sample text
23. L. E. Dickson, Linear groups with an exposition of the Galois field theory, New York, Dover, 1958. 24. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. , 76, N 3 (1984), 469—514. 25. P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups P Ω+ 8 (q) and of their automorphism groups, J. Algebra, 66, N 1 (1987), 173—242. 26. D. Gorenstein, K. Harada, Finite simple groups of low rank and the families G2 (q), D42 (q), q odd, Bull. Am. Math.
16, пр. Ак. Коптюга, 4, Институт математики Институт математики СО РАН. и механики УрО РАН.
P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups P Ω+ 8 (q) and of their automorphism groups, J. Algebra, 66, N 1 (1987), 173—242. 26. D. Gorenstein, K. Harada, Finite simple groups of low rank and the families G2 (q), D42 (q), q odd, Bull. Am. Math. , 77, N 6 (1971), 829—862. Поступило 8 августа 2001 г. Адреса авторов: Окончательный вариант 17 ноября 2002 г. КОНДРАТЬЕВ Анатолий Семенович, МАЗУРОВ Виктор Данилович, РОССИЯ, РОССИЯ, 620066, г. Екатеринбург, 630090, г.