A Bowen type rigidity theorem for non-cocompact hyperbolic by Xiangdong Xie

By Xiangdong Xie

We determine a Bowen variety pressure theorem for the basic staff of a noncompacthyperbolic manifold of finite quantity (with size at the very least 3).

Show description

Read Online or Download A Bowen type rigidity theorem for non-cocompact hyperbolic groups PDF

Best symmetry and group books

An Introduction to Harmonic Analysis on Semisimple Lie Groups (Cambridge Studies in Advanced Mathematics)

Now in paperback, this graduate-level textbook is a wonderful creation to the illustration conception of semi-simple Lie teams. Professor Varadarajan emphasizes the advance of primary subject matters within the context of designated examples. He starts off with an account of compact teams and discusses the Harish-Chandra modules of SL(2,R) and SL(2,C).

Molecular Symmetry

Symmetry and staff conception offer us with a rigorous procedure for the outline of the geometry of items via describing the styles of their constitution. In chemistry it's a robust idea that underlies many it appears disparate phenomena. Symmetry permits us to safely describe the kinds of bonding that may happen among atoms or teams of atoms in molecules.

Additional resources for A Bowen type rigidity theorem for non-cocompact hyperbolic groups

Sample text

23. L. E. Dickson, Linear groups with an exposition of the Galois field theory, New York, Dover, 1958. 24. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. , 76, N 3 (1984), 469—514. 25. P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups P Ω+ 8 (q) and of their automorphism groups, J. Algebra, 66, N 1 (1987), 173—242. 26. D. Gorenstein, K. Harada, Finite simple groups of low rank and the families G2 (q), D42 (q), q odd, Bull. Am. Math.

16, пр. Ак. Коптюга, 4, Институт математики Институт математики СО РАН. и механики УрО РАН.

P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups P Ω+ 8 (q) and of their automorphism groups, J. Algebra, 66, N 1 (1987), 173—242. 26. D. Gorenstein, K. Harada, Finite simple groups of low rank and the families G2 (q), D42 (q), q odd, Bull. Am. Math. , 77, N 6 (1971), 829—862. Поступило 8 августа 2001 г. Адреса авторов: Окончательный вариант 17 ноября 2002 г. КОНДРАТЬЕВ Анатолий Семенович, МАЗУРОВ Виктор Данилович, РОССИЯ, РОССИЯ, 620066, г. Екатеринбург, 630090, г.

Download PDF sample

Rated 4.24 of 5 – based on 32 votes